Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Cell Rep ; 39(1): 110602, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35385755

RESUMO

Up to 15% of human cancers maintain their telomeres through a telomerase-independent mechanism, termed "alternative lengthening of telomeres" (ALT) that relies on homologous recombination between telomeric sequences. Emerging evidence suggests that the recombinogenic nature of ALT telomeres results from the formation of RNA:DNA hybrids (R-loops) between telomeric DNA and the long-noncoding telomeric repeat-containing RNA (TERRA). Here, we show that the mismatch repair protein MutSß, a heterodimer of MSH2 and MSH3 subunits, is enriched at telomeres in ALT cancer cells, where it prevents the accumulation of telomeric G-quadruplex (G4) structures and R-loops. Cells depleted of MSH3 display increased incidence of R-loop-dependent telomere fragility and accumulation of telomeric C-circles. We also demonstrate that purified MutSß recognizes and destabilizes G4 structures in vitro. These data suggest that MutSß destabilizes G4 structures in ALT telomeres to regulate TERRA R-loops, which is a prerequisite for maintenance of telomere integrity during ALT.


Assuntos
Neoplasias , RNA Longo não Codificante , DNA/metabolismo , Humanos , Neoplasias/genética , Estruturas R-Loop , RNA Longo não Codificante/metabolismo , Telômero/metabolismo , Homeostase do Telômero
2.
Cells ; 11(4)2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35203293

RESUMO

Human CtIP is best known for its role in DNA end resection to initiate DNA double-strand break repair by homologous recombination. Recently, CtIP has also been shown to protect reversed replication forks from nucleolytic degradation upon DNA replication stress. However, still little is known about the DNA damage response (DDR) networks that preserve genome integrity and sustain cell survival in the context of CtIP insufficiency. Here, to reveal such potential buffering relationships, we screened a DDR siRNA library in CtIP-deficient cells to identify candidate genes that induce synthetic sickness/lethality (SSL). Our analyses unveil a negative genetic interaction between CtIP and BARD1, the heterodimeric binding partner of BRCA1. We found that simultaneous disruption of CtIP and BARD1 triggers enhanced apoptosis due to persistent replication stress-induced DNA lesions giving rise to chromosomal abnormalities. Moreover, we observed that the genetic interaction between CtIP and BARD1 occurs independently of the BRCA1-BARD1 complex formation and might be, therefore, therapeutical relevant for the treatment of BRCA-defective tumors.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Endodesoxirribonucleases , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Genes Supressores de Tumor , Recombinação Homóloga , Humanos , Interferência de RNA , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
Cell Rep ; 36(9): 109649, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34469738

RESUMO

CAG repeat expansion in the HTT gene drives Huntington's disease (HD) pathogenesis and is modulated by DNA damage repair pathways. In this context, the interaction between FAN1, a DNA-structure-specific nuclease, and MLH1, member of the DNA mismatch repair pathway (MMR), is not defined. Here, we identify a highly conserved SPYF motif at the N terminus of FAN1 that binds to MLH1. Our data support a model where FAN1 has two distinct functions to stabilize CAG repeats. On one hand, it binds MLH1 to restrict its recruitment by MSH3, thus inhibiting the assembly of a functional MMR complex that would otherwise promote CAG repeat expansion. On the other hand, it promotes accurate repair via its nuclease activity. These data highlight a potential avenue for HD therapeutics in attenuating somatic expansion.


Assuntos
Encéfalo/enzimologia , Dano ao DNA , Reparo de Erro de Pareamento de DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteína Huntingtina/genética , Doença de Huntington/enzimologia , Enzimas Multifuncionais/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Expansão das Repetições de Trinucleotídeos , Animais , Ligação Competitiva , Encéfalo/patologia , Linhagem Celular Tumoral , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Células HEK293 , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Enzimas Multifuncionais/genética , Proteína 1 Homóloga a MutL/genética , Proteína 3 Homóloga a MutS/genética , Proteína 3 Homóloga a MutS/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
4.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330701

RESUMO

FAN1, a DNA structure-specific nuclease, interacts with MLH1, but the repair pathways in which this complex acts are unknown. FAN1 processes DNA interstrand crosslinks (ICLs) and FAN1 variants are modifiers of the neurodegenerative Huntington's disease (HD), presumably by regulating HD-causing CAG repeat expansions. Here, we identify specific amino acid residues in two adjacent FAN1 motifs that are critical for MLH1 binding. Disruption of the FAN1-MLH1 interaction confers cellular hypersensitivity to ICL damage and defective repair of CAG/CTG slip-outs, intermediates of repeat expansion mutations. FAN1-S126 phosphorylation, which hinders FAN1-MLH1 association, is cell cycle-regulated by cyclin-dependent kinase activity and attenuated upon ICL induction. Our data highlight the FAN1-MLH1 complex as a phosphorylation-regulated determinant of ICL response and repeat stability, opening novel paths to modify cancer and neurodegeneration.


Assuntos
Endodesoxirribonucleases , Exodesoxirribonucleases , DNA , Dano ao DNA , Endodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Enzimas Multifuncionais/genética
5.
J Huntingtons Dis ; 10(1): 95-122, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33579867

RESUMO

FAN1 encodes a DNA repair nuclease. Genetic deficiencies, copy number variants, and single nucleotide variants of FAN1 have been linked to karyomegalic interstitial nephritis, 15q13.3 microdeletion/microduplication syndrome (autism, schizophrenia, and epilepsy), cancer, and most recently repeat expansion diseases. For seven CAG repeat expansion diseases (Huntington's disease (HD) and certain spinocerebellar ataxias), modification of age of onset is linked to variants of specific DNA repair proteins. FAN1 variants are the strongest modifiers. Non-coding disease-delaying FAN1 variants and coding disease-hastening variants (p.R507H and p.R377W) are known, where the former may lead to increased FAN1 levels and the latter have unknown effects upon FAN1 functions. Current thoughts are that ongoing repeat expansions in disease-vulnerable tissues, as individuals age, promote disease onset. Fan1 is required to suppress against high levels of ongoing somatic CAG and CGG repeat expansions in tissues of HD and FMR1 transgenic mice respectively, in addition to participating in DNA interstrand crosslink repair. FAN1 is also a modifier of autism, schizophrenia, and epilepsy. Coupled with the association of these diseases with repeat expansions, this suggests a common mechanism, by which FAN1 modifies repeat diseases. Yet how any of the FAN1 variants modify disease is unknown. Here, we review FAN1 variants, associated clinical effects, protein structure, and the enzyme's attributed functional roles. We highlight how variants may alter its activities in DNA damage response and/or repeat instability. A thorough awareness of the FAN1 gene and FAN1 protein functions will reveal if and how it may be targeted for clinical benefit.


Assuntos
Reparo do DNA/genética , Endodesoxirribonucleases/genética , Exodesoxirribonucleases/genética , Genes Modificadores/genética , Instabilidade Genômica/genética , Doença de Huntington/genética , Enzimas Multifuncionais/genética , Ataxias Espinocerebelares/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Humanos
6.
Adv Sci (Weinh) ; 7(22): 2001970, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33240760

RESUMO

A versatile and Lipinski-compliant DNA-encoded library (DEL), comprising 366 600 glutamic acid derivatives coupled to oligonucleotides serving as amplifiable identification barcodes is designed, constructed, and characterized. The GB-DEL library, constructed in single-stranded DNA format, allows de novo identification of specific binders against several pharmaceutically relevant proteins. Moreover, hybridization of the single-stranded DEL with a set of known protein ligands of low to medium affinity coupled to a complementary DNA strand results in self-assembled selectable chemical structures, leading to the identification of affinity-matured compounds.

7.
Mol Cell ; 77(3): 528-541.e8, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31759821

RESUMO

Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.


Assuntos
Replicação do DNA/fisiologia , Estruturas R-Loop/genética , Rad51 Recombinase/metabolismo , Linhagem Celular Tumoral , DNA Ligases/metabolismo , DNA Polimerase III/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Células HeLa , Humanos , Estruturas R-Loop/fisiologia , Rad51 Recombinase/genética , Rad51 Recombinase/fisiologia , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , RecQ Helicases/metabolismo , RecQ Helicases/fisiologia , Transcrição Gênica/genética
8.
Mol Cell ; 73(6): 1089-1091, 2019 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-30901561

RESUMO

In this issue of Molecular Cell, Zong et al. (2019) reveal RNF168-driven chromatin ubiquitylation as a key back-up mechanism to sustain homologous recombination (HR) independently of BRCA1. These findings provide new clues to carcinogenesis and cancer therapy in BRCA1 heterozygous mutation carriers.


Assuntos
Cromatina , Haploinsuficiência , Proteína BRCA1/genética , Linhagem Celular Tumoral , Recombinação Homóloga , Ubiquitinação
9.
Mol Cell ; 72(3): 568-582.e6, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30344097

RESUMO

Protecting stalled DNA replication forks from degradation by promiscuous nucleases is essential to prevent genomic instability, a major driving force of tumorigenesis. Several proteins commonly associated with the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) have been implicated in the stabilization of stalled forks. Human CtIP, in conjunction with the MRE11 nuclease complex, plays an important role in HR by promoting DSB resection. Here, we report an unanticipated function for CtIP in protecting reversed forks from degradation. Unlike BRCA proteins, which defend nascent DNA strands from nucleolytic attack by MRE11, we find that CtIP protects perturbed forks from erroneous over-resection by DNA2. Finally, we uncover functionally synergistic effects between CtIP and BRCA1 in mitigating replication-stress-induced genomic instability. Collectively, our findings reveal a DSB-resection- and MRE11-independent role for CtIP in preserving fork integrity that contributes to the survival of BRCA1-deficient cells.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Replicação do DNA/fisiologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Proteína BRCA1 , Proteína BRCA2 , Linhagem Celular , Quebras de DNA de Cadeia Dupla , DNA Helicases/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA , Desoxirribonucleases , Endodesoxirribonucleases , Instabilidade Genômica/fisiologia , Recombinação Homóloga/genética , Humanos , Proteína Homóloga a MRE11/metabolismo , Ligação Proteica
10.
Nat Commun ; 8(1): 2285, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29263317

RESUMO

The financial support for this Article was not fully acknowledged. The Acknowledgements should have included the following: This study was in part supported by the Swiss National Foundation Grant No.: 31003A-156023 to Alessandro Sartori.

11.
Nat Commun ; 8(1): 1073, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-29051491

RESUMO

Interstrand cross-link (ICL) hypersensitivity is a characteristic trait of Fanconi anemia (FA). Although FANCD2-associated nuclease 1 (FAN1) contributes to ICL repair, FAN1 mutations predispose to karyomegalic interstitial nephritis (KIN) and cancer rather than to FA. Thus, the biological role of FAN1 remains unclear. Because fork stalling in FAN1-deficient cells causes chromosomal instability, we reasoned that the key function of FAN1 might lie in the processing of halted replication forks. Here, we show that FAN1 contains a previously-uncharacterized PCNA interacting peptide (PIP) motif that, together with its ubiquitin-binding zinc finger (UBZ) domain, helps recruit FAN1 to ubiquitylated PCNA accumulated at stalled forks. This prevents replication fork collapse and controls their progression. Furthermore, we show that FAN1 preserves replication fork integrity by a mechanism that is distinct from BRCA2-dependent homologous recombination. Thus, targeting FAN1 activities and its interaction with ubiquitylated PCNA may offer therapeutic opportunities for treatment of BRCA-deficient tumors.


Assuntos
Proteína BRCA2/metabolismo , Exodesoxirribonucleases/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteína BRCA2/genética , Linhagem Celular Tumoral , Reparo do DNA/genética , Reparo do DNA/fisiologia , Replicação do DNA/genética , Replicação do DNA/fisiologia , Endodesoxirribonucleases , Exodesoxirribonucleases/genética , Humanos , Enzimas Multifuncionais , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica/genética , Ligação Proteica/fisiologia , Ubiquitinação/genética , Ubiquitinação/fisiologia
12.
Nat Commun ; 7: 12628, 2016 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-27561354

RESUMO

Human CtIP is a decisive factor in DNA double-strand break repair pathway choice by enabling DNA-end resection, the first step that differentiates homologous recombination (HR) from non-homologous end-joining (NHEJ). To coordinate appropriate and timely execution of DNA-end resection, CtIP function is tightly controlled by multiple protein-protein interactions and post-translational modifications. Here, we identify the Cullin3 E3 ligase substrate adaptor Kelch-like protein 15 (KLHL15) as a new interaction partner of CtIP and show that KLHL15 promotes CtIP protein turnover via the ubiquitin-proteasome pathway. A tripeptide motif (FRY) conserved across vertebrate CtIP proteins is essential for KLHL15-binding; its mutation blocks KLHL15-dependent CtIP ubiquitination and degradation. Consequently, DNA-end resection is strongly attenuated in cells overexpressing KLHL15 but amplified in cells either expressing a CtIP-FRY mutant or lacking KLHL15, thus impacting the balance between HR and NHEJ. Collectively, our findings underline the key importance and high complexity of CtIP modulation for genome integrity.


Assuntos
Proteínas de Transporte/metabolismo , Reparo do DNA por Junção de Extremidades , Recombinação Homóloga/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitinação/genética , Proteínas de Transporte/genética , Linhagem Celular , Proteínas Culina/metabolismo , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases , Humanos , Mutação , Proteínas Nucleares/genética , Domínios e Motivos de Interação entre Proteínas/genética , Proteólise
14.
Trends Biochem Sci ; 40(5): 275-85, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25845889

RESUMO

Telomeres are nucleoprotein structures capping the natural termini of eukaryotic linear chromosomes. Telomeres possess an inherent ability to circumvent the activation of a full-blown DNA damage response (DDR), and hence fusion reactions, by limiting inappropriate double-strand break (DSB) repair and processing activities at eukaryotic chromosome ends. A telomere-specific protein complex, termed shelterin, has a crucial function in safeguarding and securing telomere integrity. Within this complex, TRF2 has emerged as the key player, dictating different states of telomere protection during the replicative lifespan of a cell. How TRF2 prevents activation of DSB repair activities at functional telomeres has now been extensively investigated. In this review we aim at exploring the complex and multi-faceted mechanisms underlying the TRF2-mediated protection of eukaryotic chromosome ends.


Assuntos
Cromossomos/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Cromatina/metabolismo , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Reparo do DNA/fisiologia , Humanos , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética
15.
Nat Commun ; 5: 5379, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25359189

RESUMO

Telomere deprotection occurs during tumorigenesis and aging upon telomere shortening or loss of the telomeric shelterin component TRF2. Deprotected telomeres undergo changes in chromatin structure and elicit a DNA damage response (DDR) that leads to cellular senescence. The telomeric long noncoding RNA TERRA has been implicated in modulating the structure and processing of deprotected telomeres. Here, we characterize the human TERRA transcriptome at normal and TRF2-depleted telomeres and demonstrate that TERRA upregulation is occurring upon depletion of TRF2 at all transcribed telomeres. TRF2 represses TERRA transcription through its homodimerization domain, which was previously shown to induce chromatin compaction and to prevent the early steps of DDR activation. We show that TERRA associates with SUV39H1 H3K9 histone methyltransferase, which promotes accumulation of H3K9me3 at damaged telomeres and end-to-end fusions. Altogether our data elucidate the TERRA landscape and defines critical roles for this RNA in the telomeric DNA damage response.


Assuntos
RNA Longo não Codificante/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Transcriptoma , Dano ao DNA , Perfilação da Expressão Gênica , Células HeLa , Histona Acetiltransferases/metabolismo , Humanos , Lisina Acetiltransferase 5 , Metiltransferases/metabolismo , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Regulação para Cima
16.
Cell Rep ; 6(4): 765-76, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24529708

RESUMO

Telomeres protect chromosome ends from being recognized as sites of DNA damage. Upon telomere shortening or telomere uncapping induced by loss of telomeric repeat-binding factor 2 (TRF2), telomeres elicit a DNA-damage response leading to cellular senescence. Here, we show that following TRF2 depletion, the levels of the long noncoding RNA TERRA increase and LSD1, which binds TERRA, is recruited to telomeres. At uncapped telomeres, LSD1 associates with MRE11, one of the nucleases implicated in the processing of 3' telomeric G overhangs, and we show that LSD1 is required for efficient removal of these structures. The LSD1-MRE11 interaction is reinforced in vivo following TERRA upregulation in TRF2-deficient cells and in vitro by TERRA-mimicking RNA oligonucleotides. Furthermore, LSD1 enhances the nuclease activity of MRE11 in vitro. Our data indicate that recruitment of LSD1 to deprotected telomeres requires MRE11 and is promoted by TERRA. LSD1 stimulates MRE11 catalytic activity and nucleolytic processing of uncapped telomeres.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histona Desmetilases/metabolismo , RNA Longo não Codificante/metabolismo , Encurtamento do Telômero , Telômero/metabolismo , Proteínas de Ligação a DNA/genética , Células HeLa , Histona Desmetilases/genética , Humanos , Proteína Homóloga a MRE11 , Ligação Proteica , RNA Longo não Codificante/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Regulação para Cima
17.
J Natl Cancer Inst ; 103(16): 1236-51, 2011 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-21799180

RESUMO

BACKGROUND: Although the prognostic value of the ATP-binding cassette, subfamily C (ABCC) transporters in childhood neuroblastoma is usually attributed to their role in cytotoxic drug efflux, certain observations have suggested that these multidrug transporters might contribute to the malignant phenotype independent of cytotoxic drug efflux. METHODS: A v-myc myelocytomatosis viral related oncogene, neuroblastoma derived (MYCN)-driven transgenic mouse neuroblastoma model was crossed with an Abcc1-deficient mouse strain (658 hMYCN(1/-), 205 hMYCN(+/1) mice) or, alternatively, treated with the ABCC1 inhibitor, Reversan (n = 20). ABCC genes were suppressed using short interfering RNA or overexpressed by stable transfection in neuroblastoma cell lines BE(2)-C, SH-EP, and SH-SY5Y, which were then assessed for wound closure ability, clonogenic capacity, morphological differentiation, and cell growth. Real-time quantitative polymerase chain reaction was used to examine the clinical significance of ABCC family gene expression in a large prospectively accrued cohort of patients (n = 209) with primary neuroblastomas. Kaplan-Meier survival analysis and Cox regression were used to test for associations with event-free and overall survival. Except where noted, all statistical tests were two-sided. RESULTS: Inhibition of ABCC1 statistically significantly inhibited neuroblastoma development in hMYCN transgenic mice (mean age for palpable tumor: treated mice, 47.2 days; control mice, 41.9 days; hazard ratio [HR] = 9.3, 95% confidence interval [CI] = 2.65 to 32; P < .001). Suppression of ABCC1 in vitro inhibited wound closure (P < .001) and clonogenicity (P = .006); suppression of ABCC4 enhanced morphological differentiation (P < .001) and inhibited cell growth (P < .001). Analysis of 209 neuroblastoma patient tumors revealed that, in contrast with ABCC1 and ABCC4, low rather than high ABCC3 expression was associated with reduced event-free survival (HR of recurrence or death = 2.4, 95% CI = 1.4 to 4.2; P = .001), with 23 of 53 patients with low ABCC3 expression experiencing recurrence or death compared with 31 of 155 patients with high ABCC3. Moreover, overexpression of ABCC3 in vitro inhibited neuroblastoma cell migration (P < .001) and clonogenicity (P = .03). The combined expression of ABCC1, ABCC3, and ABCC4 was associated with patients having an adverse event, such that of the 12 patients with the "poor prognosis" expression pattern, 10 experienced recurrence or death (HR of recurrence or death = 12.3, 95% CI = 6 to 27; P < .001). CONCLUSION: ABCC transporters can affect neuroblastoma biology independently of their role in chemotherapeutic drug efflux, enhancing their potential as targets for therapeutic intervention.


Assuntos
Antineoplásicos/farmacologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Adolescente , Animais , Western Blotting , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Intervalo Livre de Doença , Regulação para Baixo , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica , Humanos , Lactente , Estimativa de Kaplan-Meier , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Associadas à Resistência a Múltiplos Medicamentos/antagonistas & inibidores , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Proteína Proto-Oncogênica N-Myc , Proteínas Nucleares/metabolismo , Razão de Chances , Proteínas Oncogênicas/metabolismo , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes , Prognóstico , Modelos de Riscos Proporcionais , Estudos Prospectivos , RNA Interferente Pequeno/metabolismo , Recidiva , Fatores de Tempo , Transfecção , Regulação para Cima , Adulto Jovem
18.
Mol Cancer Res ; 9(8): 1054-66, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21693596

RESUMO

Resistance to chemotherapeutic agents remains one of the major impediments to a successful treatment of chronic myeloid leukemia (CML). Misregulation of the activity of a specific group of ATP-binding cassette transporters (ABC) is responsible for reducing the intracellular concentration of drugs in leukemic cells. Moreover, a consistent body of evidence also suggests that ABC transporters play a role in cancer progression beyond the efflux of cytotoxic drugs. Despite a large number of studies that investigated the function of the ABC transporters, little is known about the transcriptional regulation of the ABC genes. Here, we present data showing that the oncoprotein c-MYC is a direct transcriptional regulator of a large set of ABC transporters in CML. Furthermore, molecular analysis carried out in CD34+ hematopoietic cell precursors of 21 CML patients reveals that the overexpression of ABC transporters driven by c-MYC is a peculiar characteristic of the CD34+ population in CML and was not found either in the population of mononuclear cells from which they had been purified nor in CD34+ cells isolated from healthy donors. Finally, we describe how the methylation state of CpG islands may regulate the access of c-MYC to ABCG2 gene promoter, a well-studied gene associated with multidrug resistance in CML, hence, affecting its expression. Taken together, our findings support a model in which c-MYC-driven transcriptional events, combined with epigenetic mechanisms, direct and regulate the expression of ABC genes with possible implications in tumor malignancy and drug efflux in CML.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antígenos CD34/metabolismo , Proliferação de Células , Células Cultivadas , Ilhas de CpG/genética , Citotoxinas , Metilação de DNA/genética , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Regiões Promotoras Genéticas , Transcrição Gênica
19.
Cancer Res ; 71(2): 404-12, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21123453

RESUMO

Neuroblastoma is the most common extracranial solid tumor of childhood. One important factor that predicts a favorable prognosis is the robust expression of the TRKA and p75NTR neurotrophin receptor genes. Interestingly, TRKA and p75NTR expression is often attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and the transcriptional repression of TRKA and p75NTR, but the precise mechanisms involved are unclear. Here, we show that MYCN acts directly to repress TRKA and p75NTR gene transcription. Specifically, we found that MYCN levels were critical for repression and that MYCN targeted proximal/core promoter regions by forming a repression complex with transcription factors SP1 and MIZ1. When bound to the TRKA and p75NTR promoters, MYCN recruited the histone deacetylase HDAC1 to induce a repressed chromatin state. Forced re-expression of endogenous TRKA and p75NTR with exposure to the HDAC inhibitor TSA sensitized neuroblastoma cells to NGF-mediated apoptosis. By directly connecting MYCN to the repression of TRKA and p75NTR, our findings establish a key pathway of clinical pathogenicity and aggressiveness in neuroblastoma.


Assuntos
Histona Desacetilase 1/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fator de Crescimento Neural/farmacologia , Proteínas do Tecido Nervoso/genética , Neuroblastoma/genética , Proteínas Nucleares/genética , Proteínas Oncogênicas/genética , Receptor trkA/genética , Receptores de Fator de Crescimento Neural/genética , Fator de Transcrição Sp1/genética , Células HEK293 , Células HeLa , Humanos , Fatores de Transcrição Kruppel-Like/metabolismo , Proteína Proto-Oncogênica N-Myc , Proteínas do Tecido Nervoso/biossíntese , Neuroblastoma/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Oncogênicas/metabolismo , Regiões Promotoras Genéticas , Estrutura Terciária de Proteína , Receptor trkA/biossíntese , Receptores de Fator de Crescimento Neural/biossíntese , Fator de Transcrição Sp1/metabolismo , Transcrição Gênica , Transfecção
20.
Mol Cell Biol ; 30(20): 4808-17, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20713443

RESUMO

Telomeres are transcribed into telomeric repeat-containing RNA (TERRA), large, heterogeneous, noncoding transcripts which form part of the telomeric heterochromatin. Despite a large number of functions that have been ascribed to TERRA, little is known about its biogenesis. Here, we present the first comprehensive analysis of the molecular structure of TERRA. We identify biochemically distinct TERRA complexes, and we describe TERRA regulation during the cell cycle. Moreover, we demonstrate that TERRA 5' ends contain 7-methylguanosine cap structures and that the poly(A) tail, present on a fraction of TERRA transcripts, contributes to their stability. Poly(A)(-) TERRA, but not poly(A)(+) TERRA, is associated with chromatin, possibly reflecting distinct biological roles of TERRA ribonucleoprotein complexes. In support of this idea, poly(A)(-) and poly(A)(+) TERRA molecules end with distinct sequence registers. We also determine that the bulk of 3'-terminal UUAGGG repeats have an average length of 200 bases, indicating that the length heterogeneity of TERRA likely stems from its subtelomeric regions. Finally, we find that TERRA is regulated during the cell cycle, being lowest in late S phase and peaking in early G(1). Our analyses offer the basis for investigating multiple regulatory pathways that affect TERRA synthesis, processing, turnover, and function.


Assuntos
RNA/biossíntese , RNA/genética , Telômero/genética , Telômero/metabolismo , Sequência de Bases , Ciclo Celular , Linhagem Celular , Células HeLa , Humanos , Capuzes de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Estabilidade de RNA , RNA Mensageiro/metabolismo , Frações Subcelulares/metabolismo , Sequências de Repetição em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...